Муниципальное бюджетное общеобразовательное учреждение «Центр образования №51»

«РАССМОТРЕНО» заседание педагогического совета №1 от августа 2022 года

«СОГЛАСОВАНО»
зам. директора по УВР
_____/О.В. Шилина/
« » августа 2022г

«УТВЕРЖДАЮ» директор МБОУ «ЦО№51» _____/И.А.Щербачева/ Приказ от 01.09.2022г. №

Рабочая программа среднего общего образования /универсальный профиль/ предмет: химия (базовый уровень) Класс 10, 11

Всего часов: 68 10 класс – 34 часа, 11 класс – 34 часа

Срок реализации программы 2 год

Составитель: Хафизова Илона Леонидовна, учитель химии и биологии

1. Пояснительная записка

Настоящая программа раскрывает содержание обучения химии обучающихся в 10 – 11 классах общеобразовательных учреждений. Она рассчитана на 34 часа в год в 10 классе и 34 часа в год в 11 классе по универсальному профилю обучения.

Данная рабочая программа составлена на основе следующих документов:

- 1. Федеральный Закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413 (далее ФГОС среднего общего образования);
- 3. Приказ Министерства просвещения РФ от 22 марта 2021 г. № 115 "Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования";
- 4. федеральный перечень учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, утвержденный приказом Минпросвещения России от 20.05.2020 №254 с изменениями (приказ Минпросвещения России от 23.12.2020 № 766);
- 5. санитарные правила СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28;
- 6. санитарные правила и нормы СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 № 2;
- 7. распоряжение Комитета по образованию от 15.04.2022 № 801-р «О формировании календарного учебного графика государственных образовательных учреждений СанктПетербурга, реализующих основные общеобразовательные программы, в 2022/2023 учебном году»;
 - 8. Устав МБОУ «ЦО №51»;
- 9. Г.Е.Рудзитиса, Ф.Г. Фельдмана 10 11 классы: учеб. пособие для общеобразоват. организаций/

Естественнонаучное образование — один из компонентов подготовки подрастающего поколения к самостоятельной жизни. Наряду с гуманитарным, социально-экономическим и технологическим компонентами образования оно обеспечивает всестороннее развитие личности ребенка за время его обучения и воспитания в школе.

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, в материальной жизни общества, в решении глобальных проблем человечества, в формировании научной картины мира, а также в воспитании экологической культуры людей.

Химия как учебный предмет вносит существенный вклад в научное миропонимание, в воспитание и развитие учащихся; призвана вооружить учащихся основами химических знаний, необходимых для повседневной жизни, заложить фундамент для дальнейшего совершенствования химических знаний, как в старших классах, так и в других учебных заведениях, а также правильно сориентировать поведение учащихся в окружающей среде.

Предмет химии специфичен. Успешность его изучения связана с овладением химическим языком, соблюдением техники безопасности при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами.

Цели курса:

Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей:

- освоение знаний о химической составляющей естественнонаучной картины мира, важнейших химических понятий, законах и теориях;
- овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;
- развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;
- воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и к окружающей среде;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических

задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Задачи изучения химии.

- 1. Формирование у учащихся знания основ химической науки: важнейших факторов, понятий, химических законов и теорий, языка науки, доступных обобщений мировоззренческого характера.
- 2. Развитие умений наблюдать и объяснять химические явления, происходящие в природе, лаборатории, в повседневной жизни.
- 3. Формирование специальных умений: обращаться с веществами, выполнять несложные эксперименты, соблюдая правила техники безопасности; грамотно применять химические знания в общении с природой и в повседневной жизни.
- 4. Раскрытие гуманистической направленности химии, ее возрастающей роли в решении главных проблем, стоящих перед человечеством, и вклада в научную картину мира.
- 5. Развитие личности обучающихся: их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и в процессе трудовой деятельности.

Основные идеи.

- Материальное единство веществ в природе, их генетическая связь, развитие форм от сравнительно простых до более сложных, входящих в состав живых организмов.
- Причинно-следственная зависимость между составом, строением, свойствами и применением веществ.
- Законы природы объективны и познаваемы. Знание законов химии дает возможность управлять химическими превращениями веществ.

Развитие химической науки служит интересам общества и призвано способствовать решению проблем, стоящих перед человечеством. Данная программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для учебного предмета «химия» в старшей школе га базовом уровне являются: умение самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата); определение сущностных характеристик изучаемого объекта; умение развернуто обосновывать суждения, давать определения, приводить доказательства; оценивание и корректировка своего поведения в окружающей среде; выполнение в практической деятельности и повседневной жизни экологических требований; использование мультимедийных ресурсов и компьютерных

технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

В курсе 10 класса закладываются основы знаний по органической химии: теория строения органических соединений А.М. Бутлерова, понятия «гомология», «изомерия» на примере углеводородов, кислородсодержащих и других органических соединений, рассматриваются причины многообразия органических веществ, особенности их строения и свойств, прослеживается причинно-следственная зависимость между составом, строением, свойствами и применением различных классов органических веществ, генетическая связь между различными классами органических соединений, а также между органическими и неорганическими веществами. В конце курса даются некоторые сведения о прикладном значении органической химии.

Объектами особого внимания являются факты взаимного влияния атомов в молекуле и вопросы, касающиеся механизмов химических реакций.

В основу программы положен принцип развивающего обучения. Программа опирается на материал, изученный в 8–9 классах, поэтому некоторые темы курса рассматриваются повторно, но уже на более высоком теоретическом уровне. Такой подход позволяет углублять и развивать понятие о веществе и химическом процессе, закреплять пройденный материал в активной памяти учащихся, а также сохранять преемственность в процессе обучения.

Программа обеспечивает сознательное усвоение учащимися важнейших химических законов, теорий и понятий; формирует представление о роли химии в развитии разнообразных отраслей производства; знакомит с веществами, окружающими человека. При этом основное внимание уделяется сущности химических реакций и методам их осуществления, а также способам защиты окружающей среды.

В данном курсе содержатся важнейшие сведения об отдельных веществах и синтетических материалах, о лекарственных препаратах, способствующих формированию здорового образа жизни и общей культуры человека.

В целом курс позволяет развить представления учащихся о познаваемости мира, единстве живой и неживой природы, сформировать знания о важнейших аспектах современной естественнонаучной картины мира, умения, востребованные в повседневной жизни и позволяющие ориентироваться в окружающем мире, воспитать человека, осознающего себя частью природы.

Программа предназначена для работы по новым учебникам химии авторов Г.Е. Рудзитиса и Ф.Г. Фельдмана, прошедшим экспертизу РАН и РАО и вошедшим в

Федеральный перечень учебников, рекомендованных Министерством образования и науки РФ к использованию в образовательной процессе в общеобразовательных учреждениях. Главная особенность этих учебников по химии – их традиционность и фундаментальность. Они обладают четко выраженной структурой, соответствующей программе по химии для общеобразовательных школ. Доступность — одна из основных особенностей учебников. Методология химии раскрывается путем ознакомления учащихся с историей развития химического знания. Нет никаких специальных методологических терминов и понятий, которые трудны для понимания учениками данного возраста.

Основное содержание учебников приведено в полное соответствие с федеральным компонентом государственного стандарта общего образования по химии. Система знаний готовит учащихся к промежуточной аттестации. Кроме того к традиционным вопросам и заданиям добавлены задания, соответствующие ЕГЭ, что дает гарантию их качественной подготовки к будущей аттестации.

Реализация данной программы в процессе обучения позволит учащимся усвоить ключевые химические компетенции и понять роль химии среди других наук о природе, значение ее для человечества.

10. Планируемые предметные результаты освоения

В результате изучения учебного предмета «Химия» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- раскрывать на примерах положения теории химического строения А.М.Бутлерова;
- понимать физический смысл Периодического закона Д.И.Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- объяснять причины многообразия веществ на основе общих представлений об их составе и строении;

- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;
- прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);
- проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков в составе пищевых продуктов и косметических средств;
- владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
 - приводить примеры гидролиза солей в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ металлов и неметаллов;
- проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;

- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

Выпускник на базовом уровне получит возможность научиться:

- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- использовать методы научного познания при выполнении проектов и учебноисследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

11. Содержание тем курса химии

10 класс

Тема 1. Теоретические основы органической химии. 4 часа

• Формирование органической химии как науки. Органические вещества. Органическая химия. Теория строения органических соединений А.М.Бутлерова. Структурная изомерия. Номенклатура. Значение теории строения органических соединений.

- Электронная природа химических связей в органических соединениях. Способы разрыва связей в молекулах органических веществ.
 - Классификация органических соединений.

Демонстрации. 1. Ознакомление с образцами органических веществ и материалами. 2. Модели молекул органических веществ. 3. Растворимость органических веществ в воде и неводных растворителях. 4. Плавление, обугливание и горение органических веществ.

Углеводороды (25 часов)

Тема 2. Предельные углеводороды (алканы). 7 часов

• Электронное и пространственное строение алканов. Гомологический ряд. Номенклатура и изомерия. Физические и химические свойства алканов. Реакции замещения. Получение и применение алканов. Циклоалканы. Строение молекул, гомологический ряд. Нахождение в природе. Физические и химические свойства.

Демонстрации. 1. Взрыв смеси метана с воздухом.2. Отношение алканов к кислотам, щелочам, к раствору перманганата калия.

Лабораторные опыты. 1. Изготовление моделей молекул углеводородов и галогенопроизводных.

Практическая работа. Качественное определение углерода и водорода в органических веществах.

Расчетные задачи. Решение задач на нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Тема 3. Непредельные углеводороды. 6 часов

• Алкены. Электронное и пространственное строение алкенов. Гомологический ряд. Номенклатура. Изомерия. Химические свойства: реакции окисления, присоединения, полимеризации. Правило Марковникова. Получение и применение алкенов. Алкадиены. Строение, свойства, применение. Природный каучук. Алкины. Электронное и пространственное строение ацетилена. Гомологи и изомеры. Номенклатура. Физические и химические свойства. Получение. Применение.

Демонстрации. 1.Горение этилена. 2. Взаимодействие этилена с раствором перманганата калия. 3. Образцы полиэтилена.

Лабораторные опыты. 1. Изготовление моделей молекул. 2. *Изучение свойств* натурального и синтетического каучуков.

Практическая работа. Получение этилена и изучение его свойств.

Тема 4. Ароматические углеводороды (арены). 4 часа

• Арены. Электронное и пространственное строение бензола. Изомерия и номенклатура. Физические и химические свойства бензола. Гомологи бензола. Особенности химических свойств бензола на примере толуола. Генетическая связь ароматических углеводородов с другими классами углеводородов.

Демонстрации. 1. Бензол как растворитель, горение бензола.2. Отношение бензола к раствору перманганата калия.3. Окисление толуола.

Тема 5. Природные источники углеводородов. 8 часов

• Природный газ. Попутные нефтяные газы. Нефть и нефтепродукты. Физические свойства. Способы переработки. Перегонка. Крекинг термический и каталитический.

Лабораторные опыты. 1. Ознакомление с образцами продуктов нефтепереработки.

Расчетные задачи. Решение задач на определение массовой или объемной доли выхода продукта реакции от теоретически возможного.

Кислородсодержащие органические соединения (26 часов)

Тема 6. Спирты и фенолы. 6 часов

- Одноатомные предельные спирты. Строение молекул, функциональная группа. Изомерия и номенклатура. Водородная связь. Свойства этанола. Физиологическое действие спиртов на организм человека. Получение и применение спиртов. Генетическая связь предельных одноатомных спиртов с углеводородами. Многоатомные спирты. Этиленгликоль, глицерин. Свойства, применение.
- Фенолы. Строение молекулы фенола. Свойства фенола. Токсичность фенола и его соединений. Применение фенола.

Демонстрации. 1. Количественное выделение водорода из этилового спирта. 2. Взаимодействие этилового спирта с бромоводородом. 3. Сравнение свойств спиртов в гомологическом ряду: растворимость в воде, горение, взаимодействие с натрием. 4. Взаимодействие глицерина с натрием. 5.

Лабораторные опыты. 1. Реакция глицерина с гидроксидом меди (2). 2. Растворение глицерина в воде, его гигроскопичность.

Расчетные задачи. Решение задач по химическим уравнениям при условии, что одно из реагирующих веществ дано в избытке.

Тема 7. Альдегиды, кетоны. 3 часа

• Альдегиды. Строение молекулы формальдегида. Функциональная группа. Изомерия и номенклатура. Свойства альдегидов. Формальдегид и ацетальдегид: получение и применение. Ацетон – представитель кетонов. Строение молекулы. Применение.

Демонстрации. 1. Взаимодействие этаналя с аммиачным раствором оксида серебра и гидроксидом меди. 2. Растворение в ацетоне различных органических веществ.

Лабораторные опыты. 1. Получение этаналя окислением этанола. 2. Окисление этаналя аммиачным раствором оксида серебра и гидроксидом меди.

Тема 8. Карбоновые кислоты. 7 часов.

• Одноосновные предельные карбоновые кислоты. Строение молекул. Функциональная группа. Изомерия и номенклатура. Свойства карбоновых кислот. Реакция этерификации. Получение карбоновых кислот и применение. Краткие сведения о непредельных карбоновых кислотах. Генетическая связь карбоновых кислот с другими классами органических соединений.

Демонстрации. 1. Отношение олеиновой кислоты к раствору перманганата калия.

Лабораторные опыты. 1. Получение уксусной кислоты из соли, опыты с ней.

Практическая работа. 1. Получение и свойства карбоновых кислот. 2. Решение экспериментальных задач на распознавание органических веществ.

Тема 9. Сложные эфиры. Жиры. 3 часа

- Сложные эфиры: свойства, получение, применение. иры, строение жиров. Жиры в природе. Свойства. Применение.
- Моющие средства. Правила безопасного обращения со средствами бытовой химии.

Лабораторные опыты. 1. Растворимость жиров, доказательство их непредельного характера, омыление жиров. 2. Сравнение свойств мыла и СМС. 3.Знакомство с образцами моющих средств. 4.Изучение их состава и инструкций по применению.

Тема 10. Углеводы. 7 часов

- Глюкоза. Строение молекулы. Оптическая (зеркальная) изомерия. Физические свойства и нахождение в природе. Применение. Фруктоза изомер глюкозы. Химические свойства глюкозы. Применение. ахароза. Строение молекулы. Свойства, применение.
- Крахмал и целлюлоза представители природных полимеров. Физические и химические свойства. Нахождение в природе. Применение. Ацетатное волокно.

Демонстрации.

Лабораторные опыты. 1.Взаимодействие раствора глюкозы с гидроксидом меди (II). 2.Взаимодействие глюкозы с аммиачным раствором оксида серебра. 3.Взаимодействие сахарозы с гидроксидом кальция. 4.Взаимодействие крахмала с иодом, гидролиз крахмала. 5.Ознакомление с образцами природных и искусственных волокон.

Практическая работа. Решение экспериментальных задач на получение и распознавание органических веществ.

Азотсодержащие органические соединения (7 часов)

Тема 11. Амины и аминокислоты. 3 часа

- Амины. Строение молекул. Аминогруппа. Физические и химические свойства. Строение молекулы анилина. Свойства анилина. Применение.
- Аминокислоты. Изомерия и номенклатура. Свойства. Аминокислоты как амфотерные органические соединения. Применение.
- Генетическая связь аминокислот с другими классами органических соединений.

Тема 12. Белки. 4 часа

- Белки природные полимеры. Состав и строение. Физические и химические свойства. Превращения белков в организме. Успехи в изучении и синтезе белков. онятие об азотсодержащих гетероциклических соединениях. Пиридин. Пиррол. Пиримидиновые и пуриновые основания.
- Нуклеиновые кислоты: состав, строение. имия и здоровье человека. Лекарства. Проблемы, связанные с применением лекарственных препаратов.

Демонстрации. 1. Окраска ткани анилиновым красителем. 2. Доказательства наличия функциональных групп в растворах аминокислот.

Лабораторные опыты. 1. Растворение и осаждение белков. 2. Денатурация белков. 3. Цветные реакции белков.

Высокомолекулярные соединения (5 часов)

Тема 13. Синтетические полимеры (5 часов)

• Понятие о высокомолекулярных соединениях. Строение молекул. Стереорегулярное и стереонерегулярное строение. Основные методы синтеза полимеров. Классификация пластмасс. Термопластичные полимеры. Полиэтилен. Полипропилен. Термопластичность. Термореактивность. интетические каучуки. Строение, свойства, получение и применение. интетические волокна. Капрон. Лавсан.

Демонстрации. Ознакомление с образцами природных и искусственных волокон, каучуков.

Лабораторные опыты. 1. Изучение свойств термопластичных полимеров. 2. Изучение свойств синтетических волокон.

Практическая работа. Распознавание пластмасс и волокон.

Расчетные задачи. Решение расчетных задач на определение массовой или объемной доли выхода продукта реакции от теоретически возможного.

Тема 14. Химия и жизнь (3 часа)

- Органическая химия, человек и природа.
- Обобщение знаний по курсу органической химии.

<u> 11 класс</u>

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИ

Тема 1. Важнейшие химические понятия и законы (4 ч)

- Атом. Химический элемент. Изотопы. Простые и сложные вещества.
- Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях, закон постоянства состава. Вещества молекулярного и немолекулярного строения.

Тема 2. Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе учения о строении атомов (5 ч)

- Атомные орбитали, s-, p-, d- и f-электроны. Особенности размещения электронов по орбиталям в атомах малых и больших периодов. Энергетические уровни, подуровни. Связь периодического закона и периодической системы химических элементов с теорией строения атомов. Короткий и длинный варианты таблицы химических элементов. Положение в периодической системе химических элементов Д. И. Менделеева водорода, лантаноидов, актиноидов и искусственно полученных элементов.
- Валентность и валентные возможности атомов. Периодическое изменение валентности и размеров атомов.

Расчетные задачи. Вычисления массы, объема или количества вещества по известной массе, объему или количеству вещества одного из вступивших в реакцию или получившихся в результате реакции.

Тема 3. Строение вещества (9 ч)

- Химическая связь. Виды и механизмы образования химической связи. Ионная связь. Катионы и анионы. Ковалентная неполярная связь. Ковалентная полярная связь. Электроотрицательность. Степень окисления. Металлическая связь. Водородная связь. Пространственное строение молекул неорганических и органических веществ.
 - Типы кристаллических решеток и свойства веществ.
 - Причины многообразия веществ: изомерия, гомология, аллотропия, изотопия.
- Дисперсные системы. Истинные растворы. Способы выражения концентрации растворов: массовая доля растворенного вещества, молярная концентрация. Коллоидные растворы. Золи, гели.

Демонстрации. Модели ионных, атомных, молекулярных и металлических кристаллических решеток. Эффект Тиндаля. Модели молекул изомеров, гомологов.

Практическая работа. Приготовление растворов с заданной молярной концентрацией.

Расчетные задачи. Вычисление массы (количества вещества, объема) продукта реакции, если для его получения дан раствор с определенной массовой долей исходного вещества.

Тема 4. Химические реакции (13 ч)

- Классификация химических реакций в неорганической и органической химии.
- Скорость реакции, ее зависимость от различных факторов. Закон действующих масс. Энергия активации. Катализ и катализаторы. Обратимость реакций. Химическое равновесие. Смещение равновесия под действием различных факторов. Принцип Ле Шателье. Производство серной кислоты контактным способом.
- Электролитическая диссоциация. Сильные и слабые электролиты. *Кислотно-основные взаимодействия в растворах*. Среда водных растворов: кислая, нейтральная, щелочная. *Ионное произведение воды*. Водородный показатель (рН) раствора.
 - Гидролиз органических и неорганических соединений.

Демонстрации. Зависимость скорости реакции от концентрации и температуры. Разложение пероксида водорода в присутствии катализатора. Определение среды раствора с помощью универсального индикатора.

Лабораторные опыты. Проведение реакций ионного обмена для характеристики свойств электролитов.

Практическая работа. Влияние различных факторов на скорость химической реакции.

Расчетные задачи. Вычисления массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей.

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Тема 5. Металлы (14ч)

- Положение металлов в периодической системе химических элементов Д. И. Менделеева. Общие свойства металлов. Электрохимический ряд напряжений металлов. Общие способы получения металлов. Электролиз растворов и расплавов. Понятие о коррозии металлов. Способы защиты от коррозии.
- Обзор металлов главных подгрупп (А-групп) периодической системы химических элементов.
- Обзор металлов побочных подгрупп (Б-групп) периодической системы химических элементов (медь, цинк, *титан*, *хром*, железо, *никель*, *платина*).
 - Сплавы металлов.
 - Оксиды и гидроксиды металлов.

Демонстрации. Ознакомление с образцами металлов и их соединений. Взаимодействие щелочных и щелочноземельных металлов с водой. Взаимодействие меди с кислородом и серой. Электролиз раствора хлорида меди(II). Опыты по коррозии металлов и защите от нее.

Лабораторные опыты. Взаимодействие цинка и железа с растворами кислот и щелочей. Знакомство с образцами металлов и их рудами (работа с коллекциями).

Расчетные задачи. Расчеты по химическим уравнениям, связанные с массовой долей выхода продукта реакции от теоретически возможного.

Тема 6. Неметаллы (10 ч)

• Обзор свойств неметаллов. Окислительно-восстановительные свойства типичных неметаллов. Оксиды неметаллов и кислородсодержащие кислоты. Водородные соединения неметаллов.

Демонстрации. Образцы неметаллов. Образцы оксидов неметаллов и кислородсодержащих кислот. Горение серы, фосфора, железа, магния в кислороде.

Лабораторные опыты. Знакомство с образцами неметаллов и их природными соединениями (работа с коллекциями). Распознавание хлоридов, сульфатов, карбонатов.

Тема 7. Генетическая связь неорганических и органических веществ. Практикум (13 ч)

• Генетическая связь неорганических и органических веществ.

Практикум: решение экспериментальных задач по неорганической химии; решение экспериментальных задач по органической химии; решение практических расчетных задач; получение, собирание и распознавание газов.